

NextFEM Designer

Verifications Guide

for RC structures

Concrete module

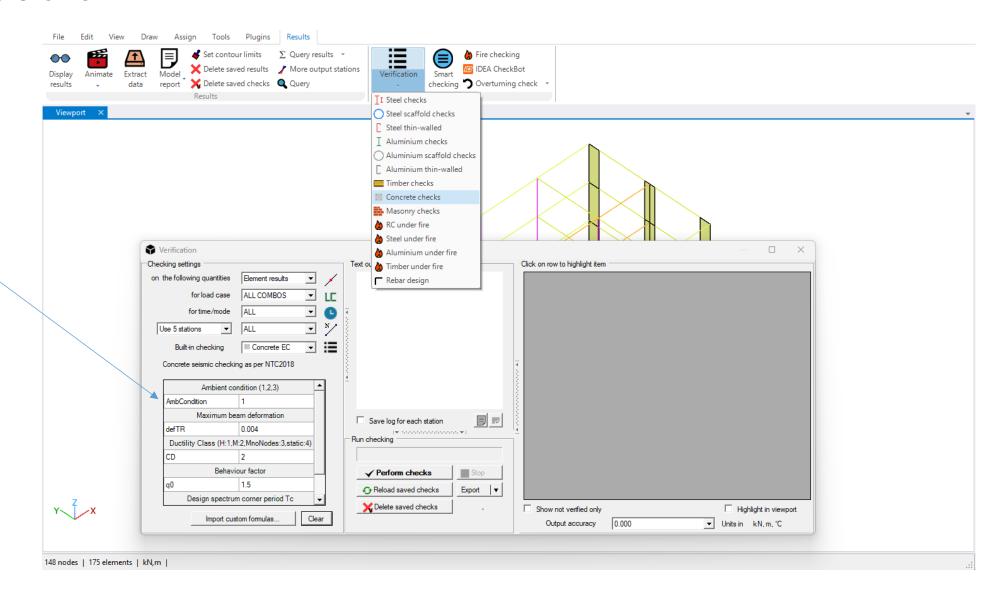
• •

The Concrete module covers checking for RC structures as per Eurocode 2 and 8, both for static and seismic conditions.

It supports:

- Static checking as per EC2
- Seismic checking with different Ductility Classes as per EC8
- Checking of section reinforcements through Section Analyzer, with unlimited shapes and materials
- Geotechnical checks on shallow foundations (slabs, girders, etc.)
- Support for checking beams, columns and walls
- Automatic dimensioning of rebars in beams, columns and walls

Concrete module


RC checking as per **EC**

Checking global settings:

AmbCondition sets the environmental conditions for RC checking:
1- normal (classes X0, XC1, XC2, XC3, XF1)

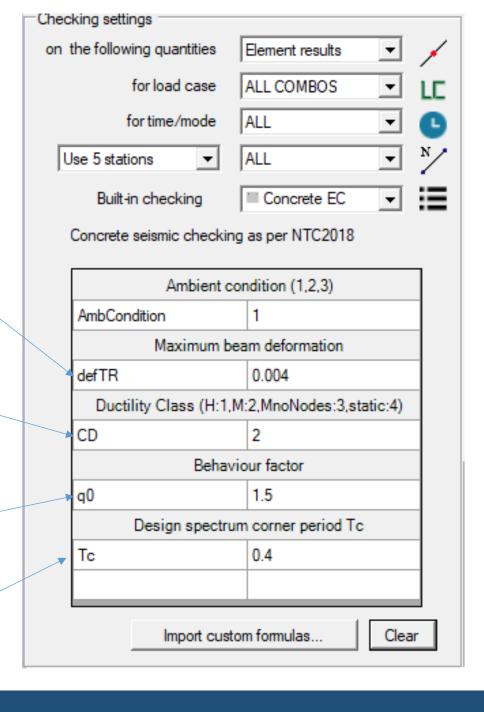
2-aggressive (classes XC4, XD1, XS1,XF2)

3- very aggressive

Concrete module

RC checking as per EC

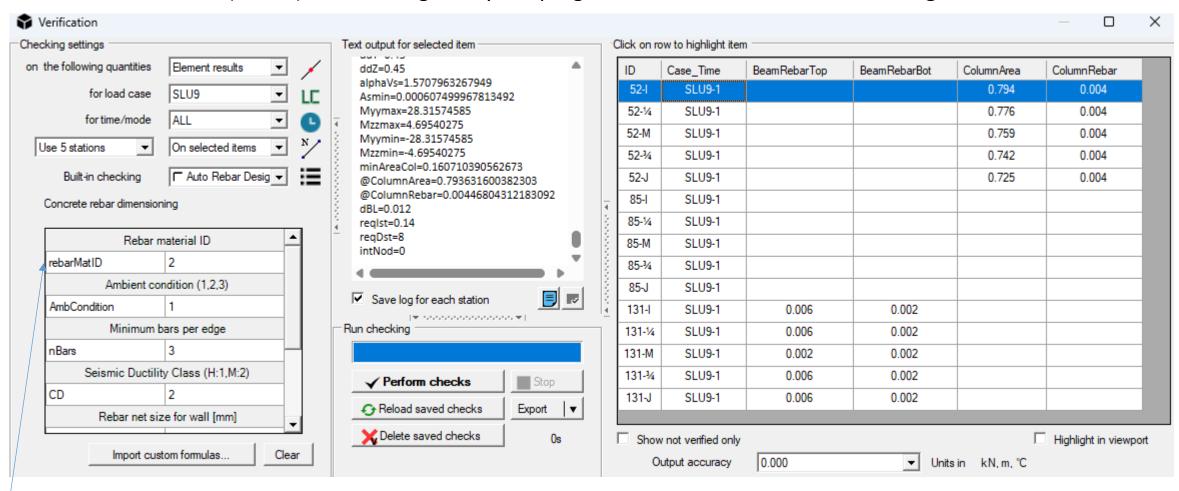
Checking global settings:


defTR sets the maximum beam deformations as a ratio of the span

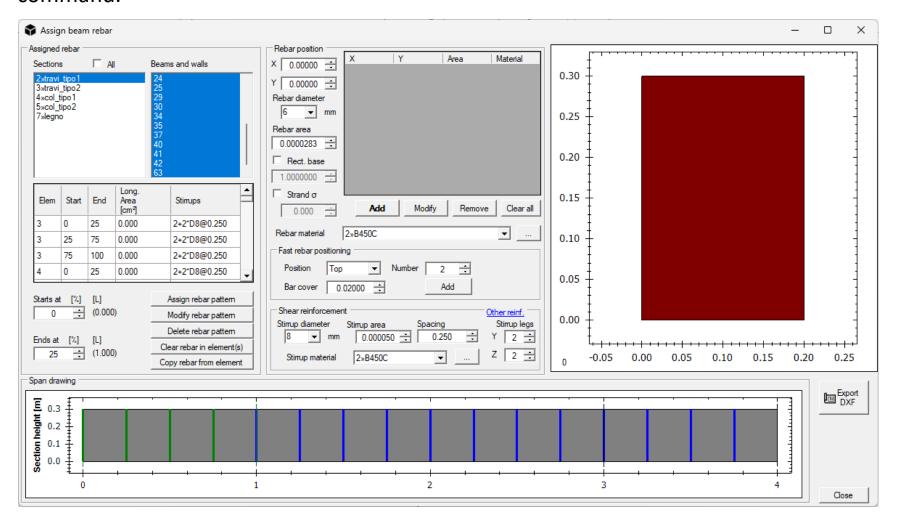
CD sets the Ductility Class for checking against seismic combos:

- 1-High
- 2-Medium/moderate
- 3-Medium with no checks on RC nodes in frames
- 4-static checking only (applicable to static combinations), low ductility, non-dissipative structures

Behaviour factor q0: is the maximum behaviour factor applicable for the structure, without considering the overstrenght ratio


Tc: corner period of the spectrum used by design, which is involved in ductility checking of sections fo CD=H or M.

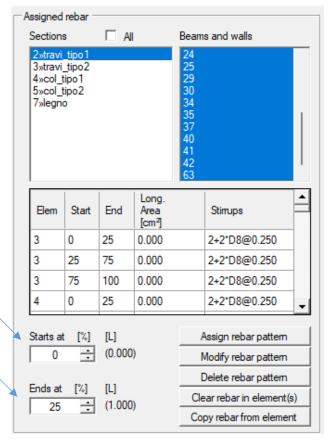
Reinforced Concrete rebar design


Steel reinforcements (rebars) can be designed by the program with static and seismic detailing.

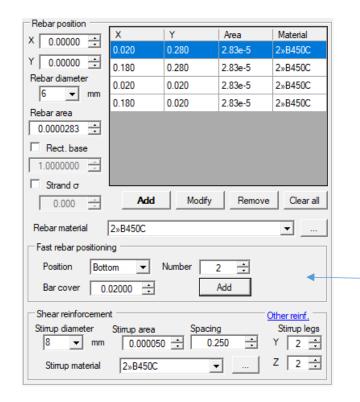
RebarMatID is the ID of the design steel material specified in *Assign / Design materials*.

Before proceeding with verification, enter the reinforcement for beams, columns and walls using the Assign / Rebars command.

From the *Sections* panel, select the name of the section.


All beams with that section will be displayed in the *Beam and Wall Elements* pane.

To assign reinforcement to all beams, select all beams.


Note

If the *Sections* box is empty, assign a concrete type material to the concrete beams.

Up to 100 segments of different reinforcement per beam can be specified from this mask. Specify start and end of segment

We then insert the reinforcements, either by coordinates, or using a preset for quick positioning. Also specify the brackets for the segment

Finally, press Assign rebar pattern to write the segment. A line is completed per ashlar showing the element, the start and end of the ashlar, the total area of longitudinal bars and the brackets in the format:

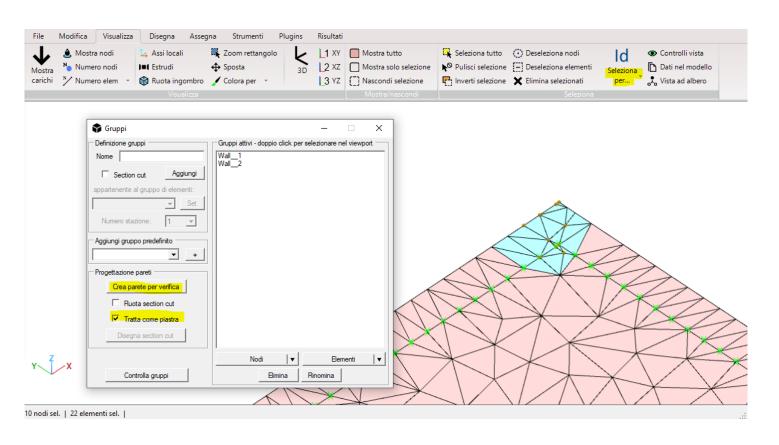
nbY+nbZ*diam@step

Elem	Start	End	Long. Area [cm	2]	Stirrups
37	0	25	0.000		2+2*D8@0.250
37	25	75	0.000		2+2*D8@0.250
37	75	100	0.000		2+2*D8@0.250
Starts at	[%]	[L]		Ass	ign rebar pattem
Starts at		, • •		Ass	ign rebar pattem
1 0	+			Mod	dify rebar pattem
			_		any resempentant
	[%]	II 1		Del	ete rebar pattem
Ends at	[%]	[L] (1.250)			

ALTERNATIVE

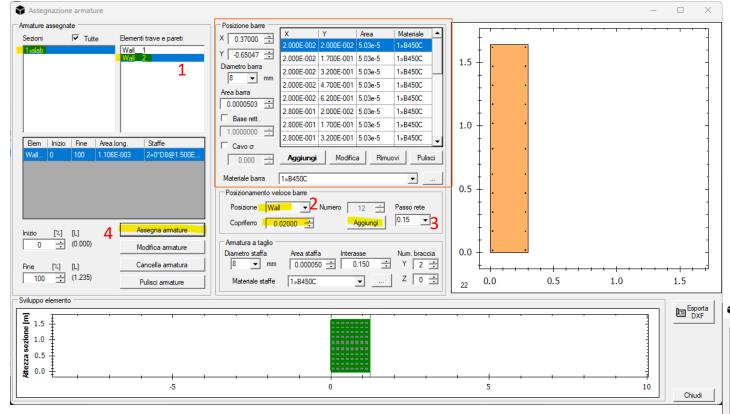
The Rebar Helper plugin (from the Plugin tab of the ribbon) works for rectangular sections of beams, columns and walls, to facilitate the input of bottom and top bars or wall bars.

It must be used as an alternative to the previous Assign Rebar mask. The previous mask can be used to locally modify the entered reinforcement.


To set the bars for beams:

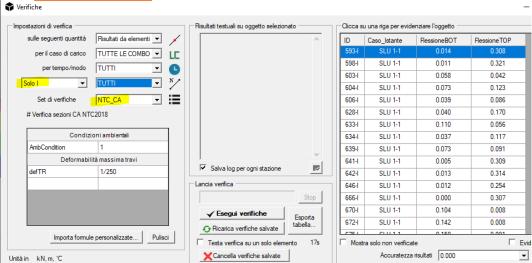
- set the number of segments (e.g. with No. 3 and with the option "Divide into quarters", segments 0-25%, 25-75% and 75-100% are created)
- set diameters and number of bottom and top beams
- press Add/modify pattern.

The 'Defined rebar' box will populate with the list of elements having the same bars.


Walls, slab and plates

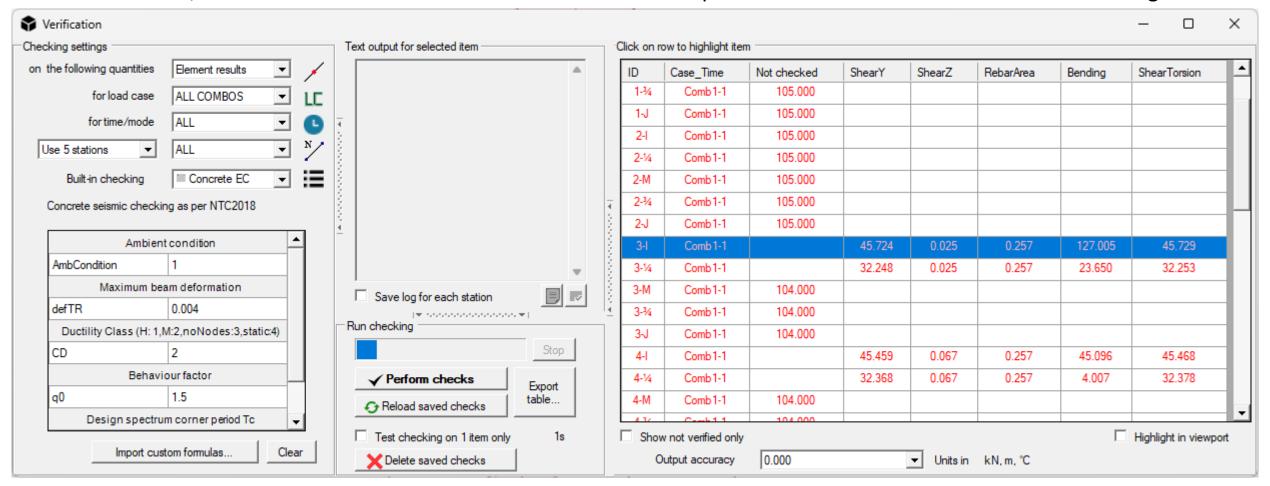
- Select plate elements affected by reinforcement
- ii. From View/Select by.../Groups, press"Create wall for verification" having selected "Treat as plate".

N.B. if the command Create wall for verification has no effect, re-enter the Groups mask without selecting any in the 'Active Groups' box

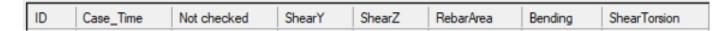


v. Open the Results/Verifications command and set it as in the figure

By pressing 'Perform checks' all plate elements will be checked for bending, indicating their D/C ratio in the table on the right.


- iv. To edit armour, open the Assign / Armour mask and:
- 1. Select the newly created *Wall* group
- Select 'Wall' type bar placement and check rebar cover
- 3. Choose a net step and press *Add*
- 4. Press Assign rebar

To add more individual bars, use the Bar Position box


Opening the verification for reinforced concrete (or CTRL+6) allows the verification of each element. Each column collects the D/C ratios for each verification. The codes in the "Not processed" column are shown on the following slide.

Rows in the table represent a single station

Columns represent a single check

Values are always ratios between Demand/Capacity

$$\rho = \frac{E_d}{R_d} = \frac{E_d}{\frac{R_k}{\gamma_M}}$$

For instance, *Stability in compression* is evaluated as follows:

$$\rho_{slend} = \frac{\max\left(\frac{L_{0y}}{i_{y}}, \frac{L_{0z}}{i_{z}}\right)}{25} \cdot \sqrt{\frac{|N|}{A \cdot f_{cd}}}$$

Shear for members without shear reinforcement

For each local direction y and z:

$$V_{rd} = \max \left\{ \left[\frac{0.18}{\gamma_m} \cdot k \cdot (100\rho_l \cdot f_{ck})^{\frac{1}{3}} + 0.15\sigma_{cp} \right] b_w \cdot ds, \left(\nu_{\min} + 0.15\sigma_{cp} \right) b_w \cdot ds \right\}$$

$$k = 1 + \sqrt{\frac{200}{ds}} \le 2 \qquad v_{\min} = 0.035k^{1.5}f_{ck}^{0.5} \qquad \rho_l = \frac{A_{sl}}{b_w \cdot ds} \qquad \sigma_{cp} = \min\left(\frac{N}{A_{cls}}, 0.2 \, f_{cd}\right)$$

Shear for members with shear reinforcement

$$V_{Rsd} = 0.9d \frac{A_{sw}}{s} f_{yd} \left(\cot \alpha + \cot \theta \right) \sin \alpha$$

$$V_{Rcd} = 0.9d \cdot b_{w} \cdot \alpha_{cw} \cdot 0.5 f_{cd} \frac{\left(\cot \alpha + \cot \theta\right)}{\left(1 + \cot^{2} \theta\right)}$$

$$V_{Rd} = \min(V_{Rsd}, V_{Rcd})$$

Check NextFEM Validation manual – Chapter 5, for further details

EC8 Seismic Design

Geometry checks are always performed for all beam, pillars and walls, as per EC8.

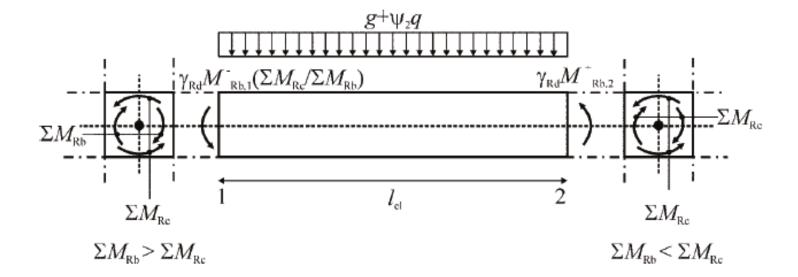
Ductility checks

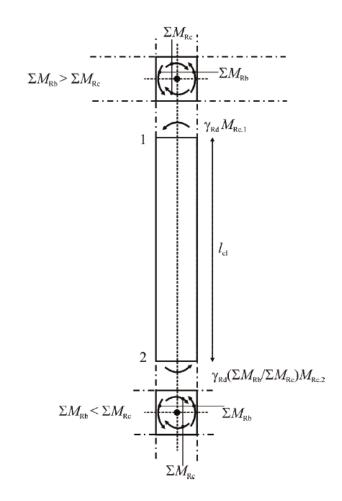
The ductility check is performed for sections of beams and columns inside the critical length, in the section facing the foundations. Ductility demand is evaluated as follows:

$$\mu_{\phi} = 2q_{\text{o}} - 1 \qquad \qquad \text{if } T_1 \ge T_{\text{C}} \tag{5.4}$$

$$\mu_{\phi} = 1 + 2(q_0 - 1)T_{\text{C}}/T_1$$
 if $T_1 < T_{\text{C}}$ (5.5)

Ductility of the RC section is automatically calculated by the program by evaluating moment-curvature for each axis of the section.


Check NextFEM Validation manual – Chapter 5, for further details



EC8 Seismic Design

Capacity design provisions are applied as well.

$$M_{i,d} = \gamma_{Rd} M_{Re,i} \min(1, \frac{\sum M_{Rb}}{\sum M_{Rc}}) \qquad V_{Ed} l_p = \gamma_{Rd} \left(\mathbf{M}_{i,d}^s + \mathbf{M}_{i,d}^i \right)$$

Check NextFEM Validation manual – Chapter 5, for further details

FRP and FRCM reinforcements

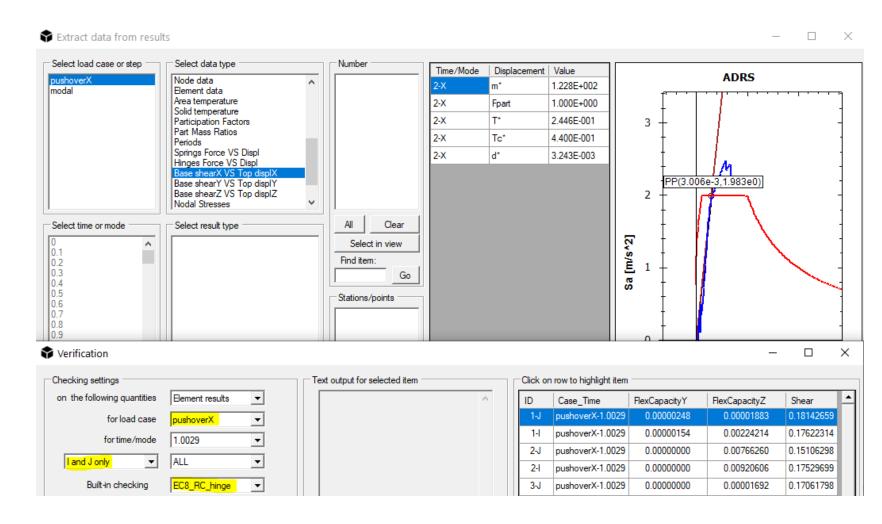
The verifications of the sections in c.a. reinforced with carbon fiber polymers (FRP) tapes are allowed in the program. The calculation procedure refers to the following Italian standard: CNR-DT 200 R2 -Instructions for the Design, Execution and Control of Static Consolidation Interventions through the use of Fiber-reinforced Composites -Materials, reinforced concrete structures and of c.a.p., masonry structures

$$f_{\rm fdd} = \frac{1}{\gamma_{\rm f,d}} \cdot \sqrt{\frac{2 \cdot E_{\rm f} \cdot \Gamma_{\rm Fd}}{t_{\rm f}}} , \qquad (4.4)$$

$$f_{\text{fdd,2}} = \frac{k_q}{\gamma_{\text{fd}}} \cdot \sqrt{\frac{E_f}{t_f}} \cdot \frac{2 \cdot k_b \cdot k_{G,2}}{FC} \cdot \sqrt{f_{\text{cm}} \cdot f_{\text{ctm}}} , \qquad (4.6)$$

minimum anchor length

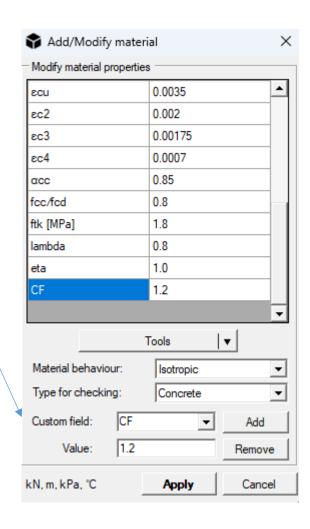
$$l_{\rm ed} = \max \left\{ \frac{1}{\gamma_{\rm Rd} \cdot f_{\rm bd}} \sqrt{\frac{\pi^2 \cdot E_{\rm f} \cdot t_{\rm f} \cdot \Gamma_{\rm Fd}}{2}}, 200 \text{ mm} \right\}, \tag{4.1}$$


Check NextFEM Validation manual – Chapter 5, for further details

Checking by pushover analysis

Non-linear static analysis (pushover) needs a global check (performed in ADRS plane by the mash *Extract Data*) and local verifications, carried-out for each element, for brittle (shear) and ductile (flexure) mechanism

Once the displacement demand is known, local checking will be performed for brittle and ductile mechanisms, directly on data supplied by hinges



Check NextFEM Validation manual – Chapter 5, for further details

Existing buildings

Checking of existing RC buildings can be performed by assigning a Confidence Factor to the RC materials

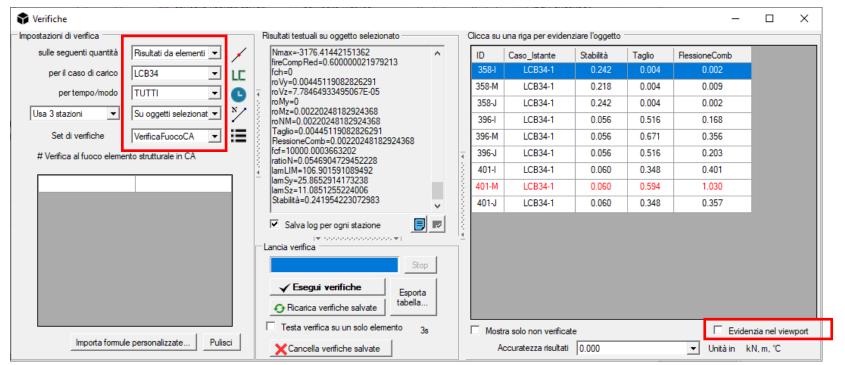
For existing buildings, checking set is automatically adjusted:

- By including CF in material strenght determination
- By considering a different set of nodal checking for RC structures, as prescribed by EC8

Check NextFEM Validation manual – Chapter 5, for further details

	Error code description in the "Not processed" column:
100	element not processed because of material other than reinforced concrete or reinforcement missing
102	material for bars missing
103	incorrect bar material (missing design deformations)
104	stress exceeds maximum tension
105	stress exceeds maximum compression
106	(only in case of elastic analysis) N=0, analysis not possible in absence of stresses
107	(only in the case of elastic analysis) elastic analysis does not converge
108	material not set for a solid or hollow figure in section
109	(only for timber material) characteristic bending stress fmk missing
110	(only for confined sections) stirrups not set
111	(only for steel-cls composite sections) wrong base material for composite section
112	(wood thermal analysis only) wrong cross-section shape - rectangular and circular cross-sections only
113	(only for steel-cls composite sections) missing material for section part
115	resistance fk of material not set
116	(only for calculation with concrete also tensile) material resistance ftk not set
117	deformation e_c2 missing
118	Deformation e_c3 missing
119	deformation e_cu missing
120	(only for FRP sections) impossible to continue calculation, EpsU <epssy-epso (4.7="" 200)<="" cnr="" dt="" td=""></epssy-epso>
121	meshing not succeded (don't use FRP strips in meshed sections)
131	EC8 beam capacity - beam rotation is not correct
132	EC8 beam capacity - too many beams connected in y direction
133	EC8 beam capacity - too many beams connected in z direction
134	EC8 beam capacity - multiple columns connected to this beam
141	EC8 column capacity - Error in calculating resistance for this element
142	EC8 column capacity - Too many columns connected
143	EC8 column capacity - Too many columns connected in y direction
144	EC8 column capacity - Too many columns connected in z direction
145	Static reinforcement details: unreinforced element
146	Seismic reinforcement details: non-shear reinforced element
147	Seismic reinforcement details: unreinforced element long.
150	Missing rebar material in auto rebar design
199	Missing value

General non-linear thermal analyzes of the sections are necessary before proceeding with the verification. Select the beams and columns on which to carry out the thermal analysis, then press CTRL+F or «Fire test» from the Results tab.


The mask allows you to choose:

- The <u>fire curve</u> to use (default is NTC; alternatively external or hydrocarbons)
- The <u>sides of the section exposed for the</u> <u>beams</u>, by default bottom and sides
- The <u>exposed sides for the pillar</u> (default: all)
- The <u>final analysis time</u> in minutes, to be set for the R requirement (if R90 required, set 90)

Fire exposure is uniform per element.
Finally, press **Generate models for verification**.

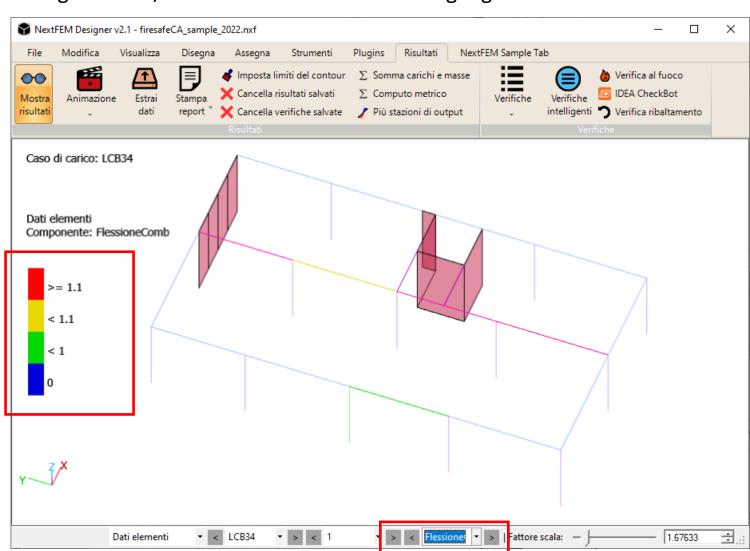
- 8 . From the Results menu, select Tests, or press CTRL+G. Setting up:
- the load case on the imported exceptional combination
 - select 3 or 5 stations and «On selected objects»
- the set of checks on VerifyFireRC
- Finally, press Run checks

The results are in tabular format (1 column = 1 check) and report the Demand / Capacity ratios of the single verified **station**. The central pane presents all the variables used for testing and their values.

The lines in red contain unsatisfied checks.

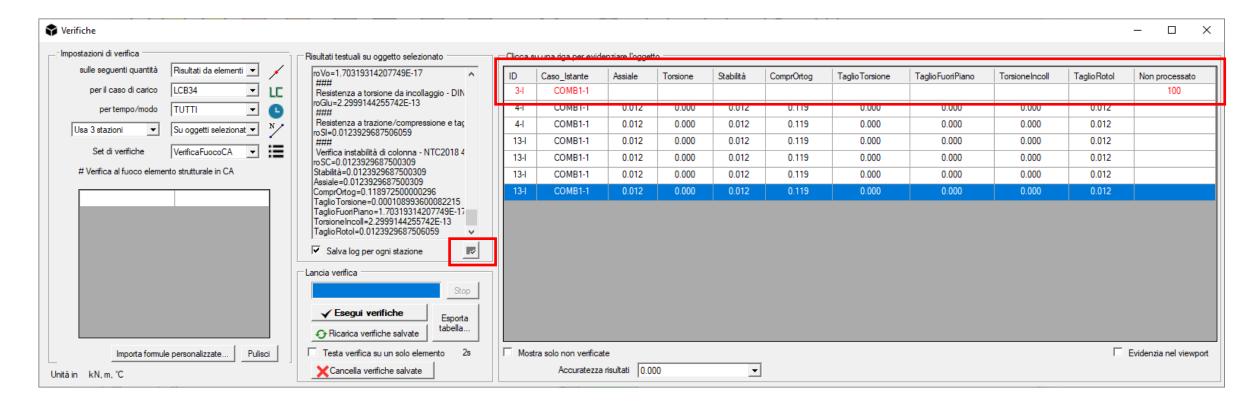
To select the item in 3D view, enable «Highlight

in viewport» and select the desired row.



The viewport displays the filled rods according to the D/C ratio with the color scale highlighted below.

The status bar (bottom) contains all the menus for switching between load cases and showing the verification results ("Element data").


By pressing F10 you can view the test reports for the selected test in the status bar in the *Component menu*.

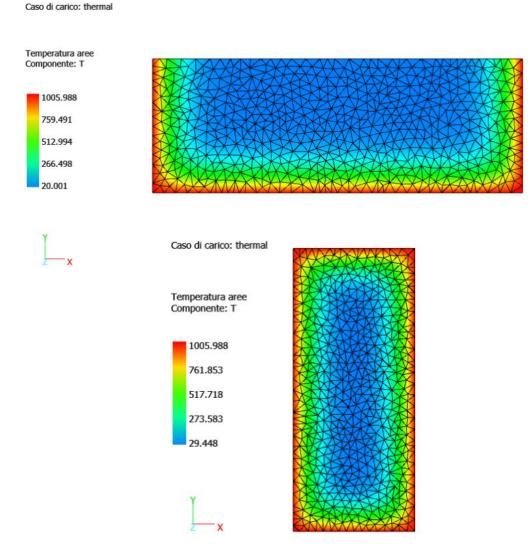
By pressing F9 you can switch to decimal format for the displayed reports.

Any verification errors or absence of results are reported in red (Not processed column with value 100).

Clicking on each line produces a text log on the verification carried out, which opens the command

v

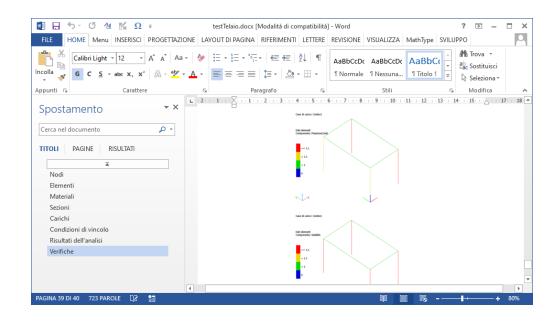
To view the **heat maps** of the analyzed sections, open the files generated by the program in the same folder where the model is saved. The files are named as follows: thermal_el.NUM_sect.ID»SectionName

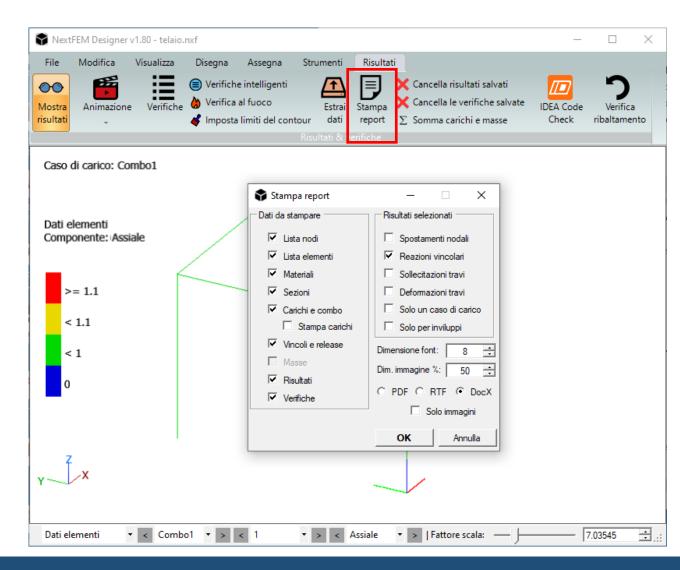

with

NUM = element number

ID number of the section

Once the file is open:


- Press <u>ALT+1</u> to show the section in the XY plane
- Press <u>CTRL+R</u> to view the final stage of the thermal analysis
- Press <u>F9</u> to view the legend in decimal format
- Press <u>ALT+S</u> to copy a screenshot



Verification report

From the Results menu, the Print report button allows you to create a report in PDF, RTF or DocX format.

The RTF and DocX formats can also contain images, automatically compiled based on the imported template.

facebook.com/nextfem

twitter.com/NextFEM

linkedin.com/company/nextfem

